$[ZrCl(C_{11}H_{19}O_2)_3]$

O(3)—C(4)	1.275 (4)	C(9)-C(16)	1.484 (6)
$O(4) \cdot \cdot \cdot Cl$	3.032 (2)	$C(10) - C(15^{iv})$	1.505 (5)
O(4)—C(7)	1.281 (4)	C(10)C(17)	1.48 (1)
C(2)—C(3)	1.523 (8)	$C(10)-C(20^{v})$	1.485 (7)
$Cl - Zr - O(2^{ii})$	161.0 (2)	O(2)C(2)C(3)	115.0 (4)
Cl—Zr—O(4)	81.5 (1)	$C(5^{i}) - C(2^{ii}) - C(3^{ii})$	123.6 (3)
$Cl - Zr - O(1^{i})$	123.0(1)	$C(11) - C(3) - C(11^{in})$	106.8 (4)
Cl - Zr - O(3)	86.6(1)	$C(12^{i}) - C(3^{ii}) - C(11^{ii})$	109.8 (3)
$O(1^{1})$ —Zr— $O(2^{11})$	76.0 (2)	O(3)C(4)C(8)	123.1 (3)
$O(1^i)$ —Zr— $O(4)$	74.0 (2)	O(3)C(4)C(9)	114.5 (3)
$O(3) - Zr - O(2^{ii})$	78.6 (2)	C(8)-C(4)-C(9)	122.4 (3)
O(3)—Zr—O(4 ⁱⁱⁱ)	151.7 (2)	$C(2^{ii}) - C(5^{i}) - C(1^{i})$	123.7 (4)
O(3)—Zr—O(4)	76.3 (2)	C(19)C(6)C(19 ⁱⁱⁱ)	99.9 (6)
$O(3) - Zr - O(1^{i})$	133.2 (2)	C(19)C(6)C(18)	128.1 (5)
$O(3)$ —Zr— $O(3^{iii})$	77.4 (2)	O(4)-C(7)-C(8)	122.6 (3)
$O(4) - Zr - O(2^{ii})$	106.1 (2)	O(4)C(7)C(10)	114.8 (3)
$O(4)$ — Zr — $O(4^{iii})$	126.5 (2)	C(8)-C(7)-C(10)	122.6 (3)
$C(1) \rightarrow O(1^{i}) \rightarrow Zr$	137.7 (3)	C(7)—C(8)—C(4)	123.3 (3)
C(2)—O(2 ⁱⁱ)—Zr	138.7 (3)	C(16)C(9)C(13)	108.5 (4)
C(4)—O(3)—Zr	135.0 (2)	C(16)-C(9)-C(14)	111.0 (3)
C(7)—O(4)—Zr	134.4 (2)	C(13)-C(9)-C(14)	108.1 (5)
O(1)-C(1)-C(5)	122.5 (4)	$C(17)-C(10)-C(20^{v})$	110.1 (6)
O(1)C(1)C(6)	116.2 (4)	$C(17)$ $C(10)$ $C(15^{iv})$	103.5 (5)
C(5)-C(1)-C(6)	121.4 (4)	$C(20^{v}) - C(10) - C(15^{v})$	112.8 (4)
$O(2^{ii}) - C(2^{ii}) - C(5^{i})$	121.4 (5)		
Commence and a section (i)		1. (11)	,

Symmetry codes: (i) x - 1, y, z - 1; (ii) x, y, z - 1; (iii) x, $\frac{1}{2} - y$, z; (iv) x - 1, y, z; (v) x, y - 1, z.

The refinement was performed in the centrosymmetric space group $P2_1/m$. The Zr⁴⁺ ions were found from the Patterson map and a Fourier calculation was used to locate the Cl⁻ positions. The coordinates of the other non-H atoms were obtained from difference Fourier syntheses. Initially, atom C(18) was placed on the 2(*e*) site and had a very high anisotropic displacement parameter along the *b* axis [U_{22} = 0.73 (13) Å²]. By setting it on the 4(*f*) site, the U_{22} coefficient was reduced to 0.25 (3) Å². A tetrahedral geometry was imposed on the H atoms of the methyl radicals using *SHELX*76 *AFIX* (Sheldrick, 1976).

Data collection: *DIF4* (Stoe & Cie, 1988*a*). Cell refinement: *DIF4*. Data reduction: *REDU4* (Stoe & Cie, 1988*b*). Program(s) used to solve structure: *SHELX76*. Program(s) used to refine structure: *SHELX76*. Molecular graphics: *SCHAKAL*92 (Keller, 1992).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: DU1125). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- France, P. W., Drexhage, M. G., Parker, J. M., Moore, M. W., Carter, S. F. & Wright, J. V. (1990). Fluoride Glass Optical Fibres, pp. 12, 65–66, 132, 186. Glasgow: Blackie.
- Fujiura, K., Nishida, Y., Sato, H., Sugawara, H., Kobayashi, K., Terunuma, Y. & Takahashi, S. (1993). J. Non-Cryst. Solids, 161, 14–17.
- Jardin, M., Guéry, J. & Jacoboni, C. (1995). J. Non-Cryst. Solids. In the press.
- Keller, E. (1992). SCHAKAL92. Computer Program for the Graphic Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
- Nishida, Y., Fujiura, K., Sato, H., Sugawara, H., Kobayashi, K. & Takahashi, S. (1992). Jpn. J. Appl. Phys. 31, L1692-L1694.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Sievers, R. E., Eisentraut, K. J., Springer, C. S. & Meek, D. W. (1967). Adv. Chem. Ser. 71, 141–154.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.
- VonDreele, R. B., Stezowski, J. J. & Fay, R. C. (1971). J. Am. Chem. Soc. 93, 2887–2892.

Acta Cryst. (1995). C51, 2232-2235

Inclusion Complex of *N*,*N*'-(1,1'-Dimethylene-3,3'-biisoquinoline 2,2'-dioxide)-4,13-diaza-18-crown-6 with Sodium Bromide

Kinga Suwińska

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01 224 Warszawa, Poland

(Received 27 October 1994; accepted 16 May 1995)

Abstract

In the title compound, $\{25,28,33,36$ -tetraoxa-1,22,39,40-tetraazahexacyclo[20.8.8.1^{3,11}.1^{12,20}.0^{4,9}.0^{14,19}]tetraconta-3(40),4,6,8,10,12(39),13,15,17,19-decaene 39,40-dioxide-O,O',O'',O''',O'''',O''''}sodium bromide monohydrate, $[Na(C_{32}H_{38}N_4O_6)]Br.H_2O$, the Na⁺ cation is located in the geometrical centre of the ligand molecule and is octahedrally coordinated by the six O atoms $[Na^+-O$ O distances vary from 2.391(1) to 2.673(1)Å] in a distorted octahedral arrangement. The water molecules are located in channels formed by cryptate cations and Br⁻ anions along the [111] direction of the unit cell.

Comment

Macrocyclic and macrobicyclic ligands containing heterocyclic N-oxide groups are able to bind lanthanide cations and form photoactive cryptates that display strong luminescence and, thus, are of interest both as new luminescent materials and potential labels for timeresolved photoimmunoassays (Alpha, Lehn & Mathis, 1987; Alpha, Balzani, Lehn, Perathoner & Sabbatini, 1987; Lehn, 1987; Sabbatini, Perathoner, Balzani, Alpha & Lehn, 1987). The syntheses of the title ligand, (I), and its lithium and europium(III) cryptates were reported by Lehn, Pietraszkiewicz & Karpiuk (1990). In order to study the details of the cryptate structures and the ligand conformation in the complex, these cryptates were crystallized and their X-ray analyses were undertaken. The present paper reports on the 'Li+ cryptate'. However, in accordance with some concern regarding the quality of

the cation as mentioned by Lehn *et al.* (1990), during the refinement it became clear that instead of Li^+ the Na⁺ cryptate was formed and this structure is reported herein. A view of the cryptate is presented in Fig. 1.

The coordination polyhedron around the Na⁺ cation (Fig. 2a) can be described as a distorted octahedron formed by the six O atoms of the macrocyclic ligand. The Na⁺—O distances vary from 2.391 (1) Å, observed for Na—O31, to 2.674 (1) Å, for Na—O13. The four N atoms are in the second coordination sphere and the Na⁺…N distances vary from 2.820 (2) (Na…N1) to 3.230 (2) Å (Na…N41).

A comparison of the values of the bond distances and valence angles with those observed in other structures found in the literature that contain the 1,10-diaza-18crown-6 moiety shows no significant differences. The energetically preferred and, consequently, the most common conformations about the C—C and C—O bonds in crown ethers and aza-crown ethers are gauche (g) and anti (a), respectively [gauche is equivalent to synclinal in the notation of Klyne & Prelog (1960), *i.e.* close to 60 (g^+) or -60° (g^-); anti is equivalent to antiperipla-

Fig. 1. View of the complex with 50% probability ellipsoids (OR-TEP11; Johnson, 1976).

Fig. 2. (a) Coordination of the Na⁺ cation. (b) 'Square' formed by the two centrosymmetrically related Br⁻ ions and two water molecules (ORTEPII; Johnson, 1976).

nar, *i.e.* close to 180°]. The torsion angles around the C—N bonds observed in known structures containing a 1,10-diaza-18-crown-6 fragment [found by examination of 102 entries in the Cambridge Structural Database (Allen, Kennard & Taylor, 1983)] are almost equally distributed between *gauche* and *anti* conformations. The sequence of torsion angles in the macrocyclic ring is $g^-g^-aag^+ag^+g^+g^-g^-aag^+aag^-a$ and there is only one exception from the 'ideal' conformation: C6—O7—C8—C9 which adopts the g^+ conformation [70.3 (2)°] instead of the expected *anti* conformation.

The crystal comprises complex cryptate cations and Br⁻ anions forming channels along the [111] crystallographic direction. The Br- ions are part of the wall of the channel, which is filled with water molecules hydrogen bonded to the Br⁻ anions; each water molecule forms two hydrogen bonds to two centre-ofsymmetry-related Br^- ions [the OW···Br distances are 3.393 (2) (via H1W) and 3.389 (2) Å (via H2W) to the Br^{-} ions in the symmetry equivalent positions x,y,z and -x, -y, -z, respectively]. Br⁻ anions are also involved in two hydrogen bonds to the two centre-of-symmetryrelated water molecules and, thus, form a parallelogram of two Br^- ions and two water molecules (Fig. 2b) with the $OW \cdots OW'$ diagonal parallel to the [111] direction. Fig. 3 shows a view along the channel and the arrangement of the water molecules. There are no intermolecular contacts shorter than the sum of van der Waals radii in the structure.

Fig. 3. View down the channel showing the arrangement of the water molecules (ATOMS; Dowty, 1994).

Experimental

The title compound was obtained by the method of Lehn, Pietraszkiewicz & Karpiuk (1990). The density D_m was measured by flotation in a trichloromethane-dichloromethane mixture.

Crystal data	
$[Na(C_{32}H_{38}N_4O_6)]Br.H_2O$ $M_r = 695.58$ Triclinic $P\bar{1}$ a = 10.625 (1) Å b = 12.598 (2) Å c = 13.551 (1) Å $\alpha = 101.85 (1)^{\circ}$ $\beta = 112.30 (1)^{\circ}$ $\gamma = 90.66 (1)^{\circ}$ $V = 1634.4 (3) Å^3$ Z = 2 $D_x = 1.413 \text{ Mg m}^{-3}$ $D_m = 1.417 \text{ Mg m}^{-3}$	Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 25 reflections $\theta = 8-40^{\circ}$ $\mu = 2.284 \text{ mm}^{-1}$ T = 293 (2) K Prismatic $0.49 \times 0.42 \times 0.21 \text{ mm}$ Pale yellow
Data collection	
Enraf-Nonius CAD-4 four- circle diffractometer ω -2 θ scans Absorption correction: none 7032 measured reflections 6713 independent reflections 6368 observed reflections $[I > 2\sigma(I)]$	$R_{int} = 0.0121$ $\theta_{max} = 74.89^{\circ}$ $h = -13 \rightarrow 13$ $k = -15 \rightarrow 0$ $l = -16 \rightarrow 16$ 3 standard reflections frequency: 60 min intensity decay: 1.5%
Refinement	

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.359 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.434 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0361$

Extinction correction:
SHELXL93 (Sheldrick,
1993)
Extinction coefficient:
0.0024 (2)
Atomic scattering factors
from International Tables
for Crystallography (1992,
Vol. C, Tables 4.2.6.8 and
6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

			•	
	x	у	Ζ	U_{eq}
Na	0.13973 (6)	0.26590 (5)	0.65748 (5)	0.04810(15)
Вг	0.22789 (2)	-0.090647 (15)	0.04731 (2)	0.06435 (6)
N1	-0.01061 (13)	0.19104 (10)	0.76654 (11)	0.0457 (3)
C2	-0.1567 (2)	0.1743 (2)	0.6952 (2)	0.0587 (5)
C3	-0.1842 (2)	0.1206 (2)	0.5774 (2)	0.0657 (5)
O4	-0.11104 (13)	0.18119 (11)	0.53731 (10)	0.0605 (3)
C5	-0.1334 (2)	0.1365 (2)	0.4253 (2)	0.0639 (5)
C6	-0.0355 (2)	0.1948 (2)	0.3967 (2)	0.0643 (5)
07	0.09577 (13)	0.17593 (11)	0.45922 (10)	0.0609 (3)
C8	0.1995 (2)	0.1949 (2)	0.4190 (2)	0.0678 (5)
C9	0.2323 (2)	0.3122 (2)	0.42751 (14)	0.0583 (5)
N10	0.27687 (13)	0.38202 (11)	0.53774 (10)	0.0453 (3)
C11	0.4245 (2)	0.3902 (2)	0.60045 (15)	0.0541 (4)
C12	0.4767 (2)	0.2866 (2)	0.6317 (2)	0.0585 (5)
013	0.40192 (12)	0.24972 (11)	0.68795 (11)	0.0595 (3)
C14	0.4472 (2)	0.1524 (2)	0.7223 (2)	0.0739 (6)
C15	0.3945 (2)	0.1374 (2)	0.8055 (2)	0.0729 (6)
016	0.24876 (12)	0.12181 (10)	0.75857 (10)	0.0562 (3)
C17	0.1980 (2)	0.0961 (2)	0.8346 (2)	0.0637 (5)
C18	0.0444 (2)	0.08772 (14)	0.7871(2)	0.0609 (4)
C19	0.0106 (2)	0.26632 (12)	0.87200 (13)	0.0447 (3)
C20	0.2335 (2)	0.49193 (14)	0.53080 (13)	0.0484 (4)
C21	0.0560 (2)	0.53628 (11)	0.81372 (11)	0.0412 (3)
C22	-0.0466(2)	0.59108 (12)	0.82853 (12)	0.0434 (3)
C23	-0.1429(2)	0.54202 (12)	0.85843 (11)	0.0422 (3)
C24	-0.2522(2)	0.59704 (14)	0.87259 (14)	0.0519 (4)
C25	-0.3444(2)	0.5462 (2)	0.8992 (2)	0.0593 (5)
C26	-0.3320(2)	0.4384 (2)	0.9126 (2)	0.0584 (4)
C27	-0.2276 (2)	0.38315 (14)	0.89919 (13)	0.0496 (4)
C28	-0.12949 (15)	0.43358 (12)	0.87154 (11)	0.0401 (3)
C29	-0.01782 (15)	0.37940 (11)	0.85817(11)	0.0390 (3)
N30	0.07325 (12)	0.43211 (9)	0.83365 (9)	0.0382 (3)
031	0.18236 (10)	0.38877 (8)	0.82913 (8)	0.0444 (2)
C32	0.1567 (2)	0.58155 (12)	0.77925 (12)	0.0428 (3)
C33	0.2410(2)	0.67363 (13)	0.83646 (13)	0.0488 (4)
C34	0.3349 (2)	0.71312 (13)	0.79846 (14)	0.0495 (4)
C35	0.4247 (2)	0.80897 (15)	0.8578 (2)	0.0604 (5)
C36	0.5168 (2)	0.8437 (2)	0.8208 (2)	0.0705 (6)
C37	0.5225 (2)	0.7858 (2)	0.7242 (2)	0.0729 (6)
C38	0.4370 (2)	0.6931 (2)	0.6640 (2)	0.0634 (5)
C39	0.3394 (2)	0.65379 (13)	0.69943 (14)	0.0477 (4)
C40	0.24698 (15)	0.55870(12)	0.63963 (12)	0.0436 (3)
N41	0.15725 (12)	0.52633 (10)	0.67876 (10)	0.0405 (3)
O42	0.06496 (10)	0.44439 (9)	0.62261 (8)	0.0444 (2)
0W	0.1041 (2)	0.14364 (13)	0.1288 (2)	0.0892 (6)
Table 2. Selected geometric parameters (Å $^{\circ}$)				
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$				
IN a()		910(17) ()4		1432(2)

Na031	2.3910(12)	O4—C5	1.432 (2)
Na042	2.4704 (13)	C5C6	1.476 (3)
Na016	2.5257 (14)	C6—O7	1.383 (2)
Na07	2.5506 (14)	O7C8	1.439 (3)
Na04	2.6111 (14)	C8C9	1.486 (3)
Na013	2.6735 (14)	C9-N10	1.464 (2)
Na· · · N1	2.820 (2)	N10-C11	1.463 (2)
Na· · ·N10	3.101 (2)	C11C12	1.503 (3)
Na· · ·N30	3.137 (2)	C12013	1.423 (2)
Na· · ·N41	3.230 (2)	O13C14	1.425 (3)

N1C2	1.469 (2)	C14C15	1.478 (4)
N1C18	1.468 (2)	C15O16	1.427 (2)
C2C3	1.512 (3)	O16C17	1.419 (3)
C3O4	1.400 (3)	C17C18	1.503 (3)
C18—N1—C2	111.52 (14)	C9-N10-C11	113.64 (14)
N1—C2—C3	113.2 (2)	N10-C11-C12	114.37 (15)
C2—C3—O4	109.8 (2)	C11-C12-O13	108.84 (14)
C3—O4—C5	113.26 (15)	C12-O13-C14	112.35 (15)
O4—C5—C6	108.9 (2)	O13-C14-C15	108.7 (2)
C5—C6—O7	109.0 (2)	C14-C15-O16	110.2 (2)
C6—O7—C8	116.3 (2)	C15-O16-C17	110.6 (2)
O7—C8—C9	113.1 (2)	O16-C17-C18	110.0 (2)
C8—C9—N10	115.4 (2)	C17-C18-N1	113.22 (15)
C18-N1-C2-C3	-72.1 (2)	C9-N10-C11-C12	68.2 (2)
N1-C2-C3-O4	-55.4 (2)	N10-C11-C12-O13	54.3 (2)
C2-C3-O4-C5	-179.1 (2)	C11-C12-O13-C14	178.94 (15)
C3-O4-C5-C6	-170.7 (2)	C12-O13-C14-C15	163.8 (2)
O4-C5-C6-O7	63.8 (2)	O13-C14-C15-O16	63.8 (2)
C5-C6-O7-C8	160.2 (2)	C14-C15-O16-C17	173.9 (2)
C6-O7-C8-C9	70.3 (2)	C15-O16-C17-C18	176.0 (2)
O7-C8-C9-N10	57.1 (2)	C2-N1-C18-C17	165.3 (2)
C8-C9-N10-C11	88.6 (2)	O16-C17-C18-N1	63.9 (2)

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP (B. A. Frenz & Associates Inc., 1985). Program(s) used to solve structure: MULTAN11/82 (Main et al., 1982). Program(s) used to refine structure: SDP; SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976); ATOMS (Dowty, 1994). Software used to prepare material for publication: SHELXL93.

The author wish to thank Dr M. Pietraszkiewicz and Mr R. Gasiorowski for kindly providing the crystals.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: KA1105). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Alpha, B., Balzani, V., Lehn, J.-M., Perathoner, S. & Sabbatini, N. (1987). Angew. Chem. Int. Ed. Engl. 26, 1266-1267.
- Alpha, B., Lehn, J.-M. & Mathis, G. (1987). Angew. Chem. Int. Ed. Engl. 26, 266–267.
- B. A. Frenz & Associates Inc. (1985). SDP. Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Dowty, E. (1994). ATOMS. A Computer Program for Displaying Atomic Structures. IBM-PC version 2.3 32-bit. Shape Software, Kingsport, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-568.
- Lehn, J.-M. (1987). Supramolecular Photochemistry, edited by V. Balzani, pp. 29-42. Dordrecht: Reidel.
- Lehn, J.-M., Pietraszkiewicz, M. & Karpiuk, J. (1990). Helv. Chim. Acta, 73, 106-111.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

- Sabbatini, N., Perathoner, S., Balzani V., Alpha, B. & Lehn, J.-M. (1987). Supramolecular Photochemistry, edited by V. Balzani, pp. 29-42. Dordrecht: Reidel.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 2235-2238

trans-Bis(1,10-phenanthroline)-*trans*bis(2,4,6-trinitrophenolato-*O*,*O'*)calcium(II)

V. VIJAYVERGIYA

Department of Biophysics, University of Delhi, South Campus, New Delhi 110 021, India

B. PADMANABHAN AND T. P. SINGH

Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India

(Received 7 March 1994; accepted 18 April 1995)

Abstract

In the title compound, $[Ca(C_6H_2N_3O_7)_2(C_{12}H_8N_2)_2]$, the Ca^{2+} ion exhibits eightfold coordination with four O atoms, two from each 2,4,6-trinitrophenolate (picrate) molecule, and four N atoms from two phenanthroline molecules, forming a twisted square antiprism. The N atoms of the phenanthroline molecule are polarized by the cation so that the Ca—N distances are comparable to the Ca—O(NO) distances.

Comment

The structure determination of the title compound, (I), was undertaken as part of studies of the coordination chemistry of alkali and alkaline earth cations. (I) was synthesized from acetone medium using 2,4,6-trinitrophenolate (picrate) as the anion and 1.10-phenanthroline (phen) as a coordinating ligand (Vijayvergiya, 1984; Kanters, Stouten, Vijayvergiya & Poonia, 1987). This compound is stable in the solid phase (stability constant in acetone 7.143 \times 10⁻³, m.p. 583 K; Vijayvergiya, 1984), as has been observed for other Ca compounds (Singh, Reinhardt & Poonia, 1980, 1984; Poonia, Chandra, Padmanabhan & Yadav, 1990). The cation is eightfold coordinated by four O atoms of two picrate molecules and four N atoms of two phenanthroline molecules to form a twisted square-antiprismatic environment (Fig. 1).